
 
 
 

 

 
PARAMETER ESTIMATION OF A TACTICAL MISSILE USING 

LINEAR REGRESSION 

 

THESIS 

 

Kelly S. Powers 

AFIT/GAE/ENY/06-S12 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 DEPARTMENT OF THE AIR FORCE 

AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 
 

Wright-Patterson Air Force Base, Ohio 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

 
 
 
 
 
 
 
 
 
 
 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the United States Air Force, Department of Defense, or the United 
States Government. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 2
  



AFIT/GAE/ENY/06-S12 

 
PARAMETER ESTIMATION OF A TACTICAL MISSILE USING LINEAR 

REGRESSION 

 

 

THESIS 

 

Presented to the Faculty 

Department of Aeronautical and Astronautical Engineering 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Aeronautical Engineering 

 

 

Kelly S. Powers, BS 

 

August 2006 

 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

 

 3





AFIT/GAE/ENY/06-S12 
 
 

Abstract 

 
 The purpose of this research was to present the method of Linear Regression as a 

parameter identification method to determine the longitudinal dimensional stability 

derivatives of a tactical missile.  Missile flight histories are characterized by rapid 

accelerations, rapidly changing mass property characteristics with often short flight 

times.  These characteristics make accurate parameter estimation of the missile 

aerodynamics more challenging than for aircraft.    The simulation used for this research 

was created in MATLAB/SIMULINK based on the missile trajectory program, TRAP.  

The aerodynamic data for the 6-DoF missile model was based on a supersonic, tail 

controlled missile similar to an AIM-9X missile.  Two command input types were 

investigated to determine if either could induce an excitation of the system modes of the 

plant being measured to lead to good estimates of the model parameters.  These two input 

types were a high-frequency pitch doublet and band-limited white noise. 

  The research indicated the conclusion:  While the method is not as complex as 

other parameter estimation methods, this research shows that linear regression can be 

used successfully in determining longitudinal dimensional stability derivatives of a 

tactical missile in flight when using a control input form with higher frequency 

modulations, such as band-limited or filtered white noise.   
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PARAMETER ESTIMATION OF A MISSILE USING LINEAR REGRESSION 

1. Introduction 

1.1  General 
 

 Aerodynamic force and moment databases for tactical missile trajectory 

simulations are usually populated with an evolving mix of analytical and wind tunnel 

derived aerodynamic predictions.  The fidelity of these simulations can be improved by 

incorporating flight test derived estimates of aerodynamic characteristics. Parameter 

estimation allows for a better understanding of theoretical predictions, improves wind 

tunnel databases, aides in the development of flight control systems and provides more 

accurate representations of the missile in all flight regimes. 

The work presented here is concerned with the parameter estimation of a tactical missile 

utilizing the linear regression, least squares algorithm.  While linear regression is widely 

understood in the scientific and mathematical world, little work has been done in 

applying the least squares method to predict aerodynamic parameters of tactical missiles.  

1.2  Background 

 Several methods are available for aerodynamic system identification from flight 

test data.  The primary problem is determining which methods are most applicable to 

tactical missiles.  Missile flight histories are characterized by rapid accelerations, rapidly 

changing weight, inertia and thrust characteristics, and often, short flight times.  These 

characteristics make accurate parameter estimation of missile aerodynamics more 

challenging than for aircraft. 
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 The concept of aerodynamic parameter determination from flight test data has 

been successfully applied to aircraft.  An aircraft used in flight test applications can be 

well equipped with complex instrumentation and sensors, which can be utilized 

repeatedly for numerous tests.  Control surface inputs can be designed to intentionally 

separate complex aerodynamic effects or excite aircraft motion while at a particular flight 

condition.  This allows for the usage of simplified aerodynamic models linearized about a 

certain flight condition.   Flight tests can also be repeated if necessary when sensor or 

telemetry problems arise. 1

 In contrast, aerodynamic parameter determination from flight test data for a 

missile flight test program presents a more difficult problem.  Because of the cost and the 

destructive nature of a missile, relatively few flight tests can be afforded.  Flight tests that 

are scheduled usually have other objectives in addition to determining the aerodynamic 

parameters of the missile.  Therefore, the opportunity to set up the missile control 

surfaces to determine the aerodynamic parameters might not be available.  Most missile 

flights involve large and rapid variations in flight condition. This minimizes the flight 

regime in which a simplified aerodynamic model will be accurate for the missile flight 

test. 1  Therefore, multiple aerodynamic models are needed to encompass the missile 

flight test envelope.  This would significantly increase computational time required for 

the missile parameter estimation technique.   

Several methods used for system identification include, Linear Regression (or Least 

Squares), Maximum Likelihood and Extended Kalman Filters.  The Maximum 

Likelihood estimator method has been successfully used to determine aerodynamic 

parameters for over 40 years.  Most of this work has been done using aircraft and not 
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much research has been found applying this method to tactical missiles.  The Maximum 

Likelihood method is popular because it can generate statistically optimum estimates of 

constant parameters.2 This, however, puts the Maximum Likelihood method at a 

disadvantage when estimating missile aerodynamic parameters due to the fact that during 

the missile flight test, large deviations from nominal flight conditions are to be expected.  

Popular programs that implement the Maximum Likelihood estimator are PEST, MMLE, 

and PARAIDE. 

The Extended Kalman Filter, EKF, method generates statistically minimum variance 

optimum estimates that can be time-varying and is also considered numerically efficient.2  

This allows the EKF method to be applied to flight test environments in which the system 

parameters are not held constant.  In this method, the system equations are linearized 

about the state-parameter vector in order to determine the optimal system estimate.  The 

maximum likelihood method avoids the linearization constraints of the EKF method; 

however, by doing so, it introduces excessive computational burdens and numerical 

difficulties. 

Linear regression has been used recently by the Air Force Research Laboratory for 

the system identification of on-line reconfigurable flight control.  The system 

identification algorithm studied identified rapid changes in parameters caused by failure 

and/or damage.  Early work developed relationships from flight mechanics to regularize 

the linear regression estimates.  Classical linear regression was augmented to include 

stochastic constraints, which were used to model uncertainty in the information conveyed 

by the constraints.  In the interest of generality, the a priori estimates of the stability and 

control derivatives were used instead as regularization constraints, where the variance 
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represents the uncertainty in the a priori estimates.3  The methodology was expanded by 

additional research that entailed a regularization process where the regressor matrix was 

subjected to a singular value decomposition that led to a reparametrization of the original 

estimation problem, where information about the parameter vector, conveyed by the data, 

was extracted.  Then, a priori information was used to regularize the estimation problem 

and obtain an estimate of the original parameter vector.4 The work was then extended to 

include over-actuated aircraft, i.e., aircraft with distributed control effectors.  This 

development was demonstrated on the F-16 VISTA aircraft for both the lateral and 

longitudinal axes.  The results of the research showed that even during periods of low 

excitation, the parameter estimates had been improved by utilizing a priori information. 

1.3  Research Objective 

 The objective of this research is to determine the applicability of using the Linear 

Regression method to determine the aerodynamic parameters of a highly maneuverable 

tactical missile.  Specifically, the research will determine the longitudinal aerodynamic 

parameters and compare them to the truth data to determine the viability of the method 

for use as a parameter identification tool.  The research will also determine the best 

command input form to drive the 6-Degree of Freedom missile simulation that will 

generate good estimates from the Linear Regression method.    
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1.4  Approach and Scope 

The work here presents the Linear Regression method as a possible tool for 

parameter identification of a missile.  The Linear Regression method was to be applied to 

real flight test data from a missile after launch.  However, data from real flight test 

experiments was not available for this research, so a 6 Degree-of-Freedom missile 

simulation in MATLAB/SIMULINK was used to generate a data set representative of 

data collected from a real flight test.  The aerodynamic data for the 6-DoF missile model 

was based on a supersonic, tail controlled missile with similar geometry and mass 

properties of an AIM-9X missile.  The missile aerodynamics of the model were limited to 

include only first-order effects due to limitations in the semi-empirical prediction code, 

Missile DATCOM, utilized for this research.  The missile model does not include 

actuator dynamics, but defines different combinations of individual control surface 

deflections into net deflections for Pδ  (Roll deflection command), Qδ (Pitch deflection 

command) and Rδ  (Yaw deflection command). 

From the data collected, the Linear Regression method was used to determine the 

three longitudinal dimensional stability derivatives, ,  and .  The Linear 

Regression method was validated first using a longitudinal linear model of the system 

with known parameters.  These parameters were then estimated using the Linear 

Regression method and compared to the known parameters for validation.   

αM qM eMδ

The Linear Regression method was then applied to the parameters, α (angle of 

attack in degrees),  (pitch rate in degrees/sec), q eδ (Elevator angle in degrees) and 
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.
q (pitch acceleration in degrees/sec2) obtained from the 6-DoF simulation data to 

determine estimates of the longitudinal stability derivatives.  The estimates were 

compared to the truth data from the aerodynamic model of the missile simulation.   

The Linear Regression was applied once more using a linear model of the system that 

used the initial estimates obtained from the simulation data as the new truth data.  Once 

again, for validation purposes, the Linear Regression estimates were compared to the 

earlier estimates from the 6-DoF simulation.   

1.5 Relevance 

This research is intended to investigate the feasibility of applying Linear Regression 

techniques to determine aerodynamic coefficients of a missile model.  It is not intended 

to compare results found by using Linear Regression to other well-known parameter 

identification methods.  The intent of this research is to provide useful findings to help 

improve the fidelity of aerodynamic force and moment databases for tactical missile 

trajectory simulations.  

1.6 Document Overview 

The document starts in Chapter 2 with an introduction to Linear Regression and 

the equations and their derivations that were used in this research.  Chapter 3 provides 

the background needed to understand the missile simulation created in SIMULINK that 

was used for this research.  It includes descriptions of the missile simulation, missile 

aerodynamics and autopilot that make up the 6-degree-of-freedom simulation.  Chapter 4 

combines both topics from Chapter 2 and Chapter 3 to produce results and analysis of the 
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proposed parameter identification method.  Chapter 5 goes over conclusions found from 

this research and proposes further research to expand on what was learned. 
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2.  Linear Regression Technique 

2.1  Overview 

 The purpose of this chapter is to provide a review of the theory of least squares or 

Linear Regression, as is described from Reference 5.  Least-squares theory has become a 

major tool for parameter estimation of experimental data.  While other estimation 

methods exist, such as Maximum Likelihood and Extended Kalman filters, the least-

squares method continues to be the most understood among engineers and scientists.  

This is due to the fact that the method is easier to understand than other methods and 

does not require knowledge of mathematical statistics.  The method also may provide 

solutions in cases where other methods have failed.  Estimates obtained by the least-

squares method have optimal statistical properties; they are consistent, unbiased and 

efficient. 

2.2  Least-Squares Theory 

 The least-squares technique provides a mathematical procedure by which a model 

can achieve a best fit to experimental data in the sense of minimum-error-squares. 

Suppose there is a variable y that is related linearly to a set of n variables, 

),...,,( 21 nxxxx = , that is 

nn xxxy θθθ +++= ...2211    (2.1) 

where ),...,,( 21 nθθθθ = is a set of constant parameters.  θ  are unknown and we wish to 

estimate their values by observing the variables and y x  at different times. 
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Assuming that a sequence of m observations on both and y x has been made at times 

, we can now relate the data by the following set of m linear equations: mttt ,...,, 21

miixixixiy nn ,...,2,1),(...)()()( 2211 =+++= θθθ   (2.2) 

This equation is called a regression function and θ  are the regression coefficients. 

This system of equations (2.2) can be arranged into a simple matrix form: 

θxy =          (2.3) 

where, 
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There are several different instances that can occur when determining the solution of 

Equation 2.4 based on the sizes of m and n. 

If , then we can solve for nm = θ  uniquely by 

yX 1−
∧

=θ          (2.5) 

provided that 1−X , the inverse of the square matrix , exists.   denotes the estimate of X
∧

θ

θ .   

When  and , there are an infinite number of solutions, the problem is 

under-constrained.  In general, this problem has an infinite number of solutions 

nm < mXrank =)(

θ  which 

exactly satisfy 0=− θXy .  In this case it is often useful to find the unique solution for θ  
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which minimizes
2

θ .  This problem is referred to as finding a minimum norm solution to 

an underdetermined system of linear equations. 

In the most usual case,  andnm > nXrank =)( , there is no solution for θXy =  .  The 

problem is also referred to as finding a least squares solution to an over-determined 

system of linear equations, where   is chosen to minimize 
∧

θ
∧

− θXy . 

The best approach to solving the over-determined equation (2.5) would be to 

determine  on the basis of least-error-squares described in the next section. 
∧

θ

2.2.1 Least-Error-Squares 

For,  )(XRy ∉

Define an error vector and let  T
meeee ),...,,( 21=

θXye −=      (2.6) 

∧

θ  will be chosen in such a way to minimize the criterion J 

∑
=

==
m

i

T
i eeeJ

1

2     (2.7) 

To carry out the minimization, J is expressed as  

)()( θθ XyXyJ T −−=  

    θθθθ XXXyyXyy TTTTTT +−−=

Differentiating J with respect to θ  and equating the result to zero to determine the 

conditions that the estimate  minimizes J, provides the necessary condition for the 

optimal estimate 

∧

θ
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022 =+−=
∂
∂ ∧

=
∧

θ
θ θθ

XXyXJ TT  

This yields 

yXXX TT =
∧

θ      (2.8) 

Solving for  
∧

θ

yXXX TT 1)( −
∧

=θ      (2.9) 

Where is commonly referred to as the pseudo-inverse.  TT XXX 1)( −

This result is known as the least-squares estimator (LSE) of θ , also called ordinary least 

squares. 

2.3  Statistical Properties of Least-squares Estimators 

 In this section the statistical qualities of the least-squares estimators are 

examined.  Looking at Equation (2.6), where the vector  can be thought of as the 

measurement noise and or modeling error, the noise-disturbed system equation is  

e

eXy += θ       (2.10) 

It is assumed that is a stationary random vector with zero mean value,  and that 

is uncorrelated with and , i.e. white noise.  Based on these assumptions about e , it 

is possible to determine the accuracy of the parameter estimates given by equation (2.9). 

e [ ] 0=eE

e y X

In general,  is a random variable.  The accuracy can be measured by a number of 

statistical properties such as bias, error covariance, efficiency and consistency.  These 

terms will be defined later in the chapter. 

∧

θ
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First showing that  is unbiased, meaning that .  Substituting equation (2.10) 

into (2.9), becomes 

∧

θ θθ =⎥⎦
⎤

⎢⎣
⎡ ∧

E

eXXX TT 1)( −
∧

+= θθ      (2.11) 

Taking the expectation on both sides of equation (2.11) and applying the 

property , the desired result is obtained, proving that  is unbiased. [ ] 0=eE
∧

θ

[ ] [ ] [ ] θθθ =+=⎥⎦
⎤

⎢⎣
⎡ −

∧

eEXXXEEE TT 1)(      (2.12) 

The covariance matrix corresponding to the estimate error is  θθ −
∧

}))({( TE θθθθ −−=Ψ
∧∧Δ

 

          }])][(){[( 11 TTTTT eXXXeXXXE −−=

    11 )(}{)( −−= XXXeeEXXX TTTT

Define the covariance matrix of the error vector  to be e

][ TeeER =           (2.13) 

Ψ is reduce to  

          (2.14) 11 )()( −−=Ψ XXRXXXX TTT

When the noise  are identically distributed and independent with zero 

mean and variance , the covariance R becomes 

,...,2,1),( =iie

2σ

              (2.15) IeeER T 2][ σ==
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This implies that the corresponding LSE  is a minimum variance estimator.   is called 

an efficient estimator. 

∧

θ
∧

θ

Lastly, LSE  will be shown as a consistent estimator.  Rewriting the error covariance 

matrix in the form of  

∧

θ

Ψ

   
12

12 1)(
−

− ⎟
⎠
⎞

⎜
⎝
⎛==Ψ XX

mm
XX TT σσ        (2.16)  

where is assumed and in which m is the number of equations in the vector 

equation (2.10).  Assume that , where 

IR 2σ=

Γ=−
∞→

1])/1[(lim XXm T
m Γ is a nonsingular 

constant matrix.  Then 

   01limlim
12

=⎟
⎠
⎞

⎜
⎝
⎛=Ψ

−

∞→∞→ XX
mm

T
mm

σ        (2.17) 

Zero error covariance means that at θθ =
∧

∞→m .  This convergence property indicates 

that  is a consistent estimator. 
∧

θ

 It has been shown in this section that the LSE in the presence of white noise is 

unbiased, efficient, and consistent, therefore the least squares technique does have many 

advantages.  The method described in this chapter will be applied to results obtained 

from the 6-degree-of-Freedom missile simulation described in the next chapter, Chapter 

3.
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3.  Missile Model and Simulation Environment 

3.1  Overview 

This chapter presents the missile simulation that will be used to generate 

simulation data that the Linear Regression technique, described in Chapter 2, will employ 

for parameter identification.  The missile was modeled as a six-degree-of-freedom 

SIMULINK model within a 1 vs. 0 simulation developed by the Air-to-Air Weapons 

Branch, Aircraft and Electronics Division, National Air and Space Intelligence Center 

(ADNW/NASIC).  This simulation is currently used to determine missile capabilities and 

to demonstrate those capabilities in enemy engagement scenarios.  This section discusses 

the missile data and the simulation obtained from ADNW/NASIC and changes that were 

made to facilitate this research. 

This chapter lays out the background needed to understand the Missile simulation created 

in SIMULINK that was used for this research.  Section 3.1 describes the framework, 

components and environments in the missile engagement simulation.  Section 3.2 

describes the aerodynamic model of the missile first by defining the aerodynamic angle 

and control surface deflection conventions.  The aerodynamic coefficients and forces and 

moment equations are then presented leading up to finally reach the Translational and 

Rotational Equations of motion for the missile airframe.  Section 3.2 ends with a 

description of the type of missile used for the research and how the aerodynamic data was 

generated for the model.  Section 3.3 describes the acceleration- controlled autopilot used 

to control the missile model.   

 

 25



3.2  Missile Simulation 

 The simulation used for this research was modified from an existing simulation 

developed by NASIC/ADNW in MATLAB/SIMULINK that was based on the missile 

trajectory program, TRAP (TRajectory Analysis Program).  The simulation represented a 

1 vs. 0 engagement with an air-to-air missile fire.   

3.2.1  Simulation Components 

The simulation is setup to simulate three vehicles: a launch aircraft, a missile and 

a target aircraft.  It is built around a detailed fly-out model for the missile with simplified 

launch aircraft and target models.  The launch aircraft is modeled as a pseudo 5-degree of 

freedom, or modified point-mass model.  The target aircraft is a 3 degree of freedom or 

point-mass model and the missile is a 6 degree of freedom model.  All three models in the 

simulation were modeled having Flat-Earth kinematics. A typical engagement is 

illustrated below. 
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Figure 3-1: Typical Simulation Engagement 

 

5 DoF Launch Aircraft 

The launch aircraft is modeled as a modified point-mass with angle-of-attack and 

simplified pitch and roll dynamics (also referred to as ‘pseudo 5-DOF’).  For this 

research, the launch aircraft was constrained to be non-maneuvering with constant 

velocity (maintained straight and level flight path).   No modifications were made to this 

model for the research described in this paper. 

3 DoF Target Aircraft  

 The target aircraft is modeled as a simplified point-mass.  The target maintained 

a straight and level flight path while holding constant velocity.  This setup for the target 
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aircraft was sufficient for the scope of this research.  No modifications were made to this 

model. 

6 DoF Missile  

The 6 degree-of-freedom missile model provided by ADNW previously had not 

been implemented into a simulation that was suitable for this research.  The 6-DOF 

missile model replace a point-mass missile model in the existing 1 vs. 0 simulation 

provided by ADNW.  The original DIME Two Axis Gimbal model and the DIME Simple 

Seeker model that were implemented into the original simulation were too complex for 

the scope of this research.  (DIME stands for the Air Force Research Laboratories 

Munitions Directorate Dense Inert Metal Explosives Laboratory).  These models were 

replaced with a much less complex Momentum Gimbal model and a Perfect Seeker 

model, respectfully. 

TELEMON TRAP Perfect Seeker and TRAP Momentum Gimbal 

The DIME Simple seeker and the DIME two-axis gimbal included in the original 

simulation were overly complicated for the purpose of this research.  These models were 

replaced with the simple TRAP Perfect Seeker and TRAP Momentum Gimbal.  For the 

perfect seeker, the seeker axis is always constrained to point at the target (subject to 

gimbal biases and limits) and the seeker line-of-sight rate commands are set to the true 

line-of-sight rate resolved into vertical and horizontal commands in the body axis (the 

body xz-plane and xy-plane).  The seeker line-of-sight rate commands are limited to the 

input maximum line-of-sight tracking rate.  The momentum gimbal is modeled for the 
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momentum-stabilized seeker platform.  The seeker x-axis is initially constrained to point 

at the target and gimbal angles are calculated according to the orientation of the gimbal 

cages.  Gimbal biases are input in pitch and yaw, and then are added to the gimbal angles.  

The gimbal angles in either pitch or yaw are then limited to the input maximum gimbal 

angle.  The resulting gimbal angles are used to calculate a new seeker-reference-axes to 

seeker-axes transformation matrix and hence a new reference-axes to seeker-axes 

transformation matrix.  This matrix is used to determine the geometric line-of-sight 

angular tracking errors in the seeker.  For the perfect seeker, these tracking errors are 

always zero when the gimbal angles are not limited and providing the gimbal angle 

biases are zero.  

3.3 Missile Aerodynamic Model 

Now that the overall architecture of the 1 vs. 0 Missile engagement simulation has 

been introduced, more detail is going to be presented on the 6-DoF missile model used in 

the simulation. 

 The aerodynamic methodology applied to the generic missile model used in this 

research is based upon the aerodynamic methodology from the NASIC/ADNA software 

called, the Trajectory Analysis Program, or TRAP for short.  TRAP has been widely used 

to evaluate the performance of aerodynamic vehicles in 1-vs-0 engagement scenarios.  

Sections 3.3.1, 3.3.2 and 3.3.3 come from Reference 6. 
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3.3.1 Aerodynamic Angle Definitions 

Aerodynamic characteristics are treated as a function of total angle-of-attack ( )'α  

and aerodynamic roll angle ( )'φ .  The relationship between these angles and the missile 

velocity components along the missile body x-axis (MVELBX = u), y-axis (MVELBY = 

v) and z-axis (MVELBZ = w) are shown in Figure 3-2.  The equations relating the angles 

to the missile velocity components are: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
= −

u
wv 22

1' tanα           (3.1) 

w
v1' tan −=φ            (3.2) 

Figure 3-2 also shows two additional angles, these are PHIPRM and OFFPHI.  PHIPRM 

is the aerodynamic roll angle for the aerodynamic characteristics and is always measured 

from the plane containing control surfaces 1 and 3, with control surface 1 to leeward for 

PHIPRM = 0.0.  The angle OFFPHI is the offset angle between the zero body roll angle 

of the body (in this case, the top of the body is mid-way between controls 1 and 4) and 

zero aerodynamic roll angle for the aerodynamic characteristics.  OFFPHI is positive if 

the missile must be rolled in the positive direction (clockwise looking along the missile 

body x-axis) when moving from zero aerodynamic roll angle (PHIPRM = 0.0) to zero 

body roll angle (PHIMSL = 0.0).  Figure 3-2 shows the relationship between PHIPRM 

and OFFPHI for both a ‘+’ and an ‘X” configuration missile (OFFPHI = 0.0 and 45.0 

degrees, respectively). 
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Figure 3-2:  Aerodynamic Angles 

3.3.2 Control Surface Deflection Conventions 

The aerodynamic methodology uses the concept of effective pitch and yaw 

control deflections along with the net roll control deflection and the net squeeze control 

deflection.  These each involve different combinations of individual control surface 

deflections.  The conventions used by the aerodynamic methodology for defining control 

surface deflections are described in the sections below for individual control surface 

deflections, effective pitch control deflection, effective yaw control deflection and roll 

control deflection. 
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Individual Control Surface Deflections  

The convention used for the individual control surface deflections denotes a 

positive control deflection as a clockwise rotation of the fin, from looking outboard from 

the missile, see Figure 3-3. 

Figure 3-3:  Individual Control Deflection Convention 

Effective Pitch Control Deflection   

The effective pitch control deflection is the sum of the individual control surface 

deflections resolved into the total angle-of-attach plane according to the equation: 

                        )sin()31(5.0)cos()42(5.0 PHIPRMPHIPRMQ δδδδδ −+−=      (3.3) 

where DELQA = Qδ  is the effective pitch control deflection. 
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Figure 3-4: Effective Pitch Control Deflection 

Figure 3-4 shows the maximum values of DELQA when the missile is at three different 

aerodynamic roll angles (PHIPRM = 0.0, 26.57, 45.0 degrees).  For the example shown 

in the figure, the maximum deflection of an individual control is 20.0 degrees.  This in 

turn gives the maximum values of DELQA of 20.0, 22.36 and 28.28 degrees at the three 

values of PHIPRM, respectively.  The maximum values follow the relationship: 

                                    
)cos(

)max()max(
PHIPRM

DELQA δ
=                              (3.4) 

where )max(δ is the maximum value for an individual control surface deflection.  For the 

purposes of the aerodynamic tables, it is inconvenient to have different maximum values 

of one of the independent variables (DELQA) associated with each value of another of 

the independent variables (PHIPRM).  To alleviate this, the values of DELQA are 

normalized by multiplying the actual value of DELQA by the cosine of PHIPRM.   The 
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illustration in Figure 3-4 shows examples of individual control deflections that produce 

only an effective pitch control deflection.  As a result, the magnitude of the normalized 

value will never exceed the maximum magnitude of an individual control surface 

deflection.  It is possible, however, to obtain normalized values of the effective pitch 

control deflection that are greater in magnitude than the maximum magnitude of an 

individual control surface deflection and exceed the maximum value in the data table.  

This occurs when the demand plane is not aligned with the total angle-of-attack plane.  In 

such cases, the effective pitch control data will be extrapolated to the required value of 

effective pitch control deflection. 

Effective Yaw Control Deflection  

The effective yaw control surface deflection is the sum of the individual control 

surface deflections resolved normal to the total angle-of-attack plane according to the 

equation: 

      )sin()42(5.0)cos()13(5.0 PHIPRMPHIPRMR δδδδδ −+−=                   (3.5) 

Where DELRA = Rδ  is the effective yaw control deflection.  Figure 3-5 shows the 

maximum values of DELRA when the missile is at three aerodynamic roll angles 

(PHIPRM = 0.0, 26.57 and 45.0 degrees).  In the figure, the maximum deflection is 

assumed to be 20.0 degrees which gives rise to the maximum values of DELRA of 20.0, 

22.36 and 28.28 at the three values of PHIPRM, respectively.   

The effective yaw control deflection is never used as an independent variable in the data 

tables.  The treatment of the effective yaw control deflection is handled through the use 

of aerodynamic derivatives, which are assumed to be independent of the magnitude of the 
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effective yaw control deflection.  As a result, there is no need to normalize the values of 

the effective yaw control surface deflection.  This use of aerodynamic derivatives can be 

rationalized because the magnitude of the effective yaw control deflection will generally 

be small.  Large effective yaw control deflections usually occur in transient situations and 

are of short duration. 

 

Figure 3-5: Effective Yaw Control Deflection 

Roll Control Deflection  

The net roll control deflection is defined by the equation: 

            ( )432125.0 δδδδδ +++=P                                (3.6) 

Where DELPA = Pδ  is the net roll control deflection.  A pure roll command is shown in 

Figure 3-6 where all the control surfaces are deflected by equal amounts in the same 

direction by 10.0 degrees. 
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Figure 3-6:  Roll Control Deflection 

The net roll control deflection is never used as an in dependent variable in the data tables.  

The treatment of the net roll control deflection is handled through the use of aerodynamic 

derivatives, which are assumed to be independent of the magnitude of the net roll control 

deflection.  This approach is rationalized because of the relatively small magnitudes that 

are usually associated with the net roll control deflections. 

Squeeze Control Deflection  

There is a combination of individual control surface deflections that produce no net 

moment and no lateral force, only an increase in the axial force.  This is called the 

squeeze control deflection.  The net squeeze control deflection is defined by the equation: 

                                                ( )432125.0 δδδδδ −+−=S                     (3.7) 
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Where DELSA = Sδ is the net squeeze control deflection.  A pure squeeze control is 

illustrated in Figure 3-7, where the maximum deflection for each individual control 

surface shown is 10.0 degrees.  It is of interest for control system design to keep the net 

squeeze control deflection to zero, since the main function of the squeeze control is to 

contribute to the axial force. 

 

Figure 3-7: Squeeze Control Deflection 

Combinations of Control Surface Deflections 

  The relationship between the individual control surface deflections 

( 4,3,2,1 )δδδδ  and the various definitions of combined control surface deflections 

( SRQP )δδδδ ,,,  can be represented by collecting the equations above and expressing 

them in the matrix form: 
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Where φ is defined as PHIPRM, the aerodynamic roll angle.  By inverting the above 

matrix, the individual control surface deflections ( )4,3,2,1 δδδδ  can be determined given 

any set of combined control deflections ( )SRQP δδδδ ,,, . 
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By applying the constraint of zero squeeze control deflection to the above equation, the 

relationship between the individual control deflections and three axes control deflections 

is determined: 

                         (3.10) 
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3.3.3 Aerodynamic Coefficients 

This section describes the aerodynamic coefficients that are included in the 

modeling of the 6-DOF missile used in this research.  The coefficients described in this 

section will be incorporated into the forces and moments equations in the next sections of 

this report.    
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Basic Airframe Aerodynamics 

There are six aerodynamic coefficients that describe the characteristics of the 

basic airframe without any control deflection.  These are: 

CA   Axial force coefficient 

'α
CN   Normal force coefficient, measured in the total angle-of -attack plane 

'α
CMREF  Pitch moment coefficient about the reference center-of-gravity location, 

measured in the total angle-of-attack plane. 
 

'α
CY  Side force coefficient, measured normal to the total angle-of-attack plane. 

'α
CLNREF  Yaw moment coefficient about the reference center-of-gravity location, 

measured normal to the total angle-of-attack plane. 
 
CLL  Roll moment coefficient 
 
Five of these coefficients are a function of the aerodynamic roll angle, total angle-of-

attack and Mach number.  Note that the subscript denotes that the coefficient is 

referenced to the total angle-of-attack plane. 

'α

Airframe Aerodynamics with Control Effects 

There are six aerodynamic coefficients and 12 static aerodynamic derivatives that 

describe the incremental aerodynamic characteristics due to control deflection.  The six 

aerodynamic coefficients are associated with the effective pitch control deflection.  Six of 

the 12 aerodynamic derivatives are associated with the roll control deflection and six are 

associated with the effective yaw control deflection. 

Effective Pitch Control Deflection 
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Because the missile maneuvers primarily in the total angle-of-attack plane, the 

effective pitch control deflection ( Qδ ) is likely to be any value up to the maximum 

physical limits of the controls.  Therefore, the effect of the effective pitch control 

deflections is treated by considering the actual deflection rather than using an 

aerodynamic derivative.  The impact of effective pitch control deflection on each of the 

six basic aerodynamic coefficients is given by: 

( ) QCA δΔ  Incremental axial force coefficient due to effective pitch control 
deflection, Qδ . 

 
( )

Q
CN

δα 'Δ  Incremental normal force coefficient due to effective pitch control 

deflection, Qδ . 
 

( )
Q

CMREF
δα 'Δ  Incremental pitch moment coefficient about the reference center-

of-gravity location due to effective pitch control deflection, Qδ . 
 

( )
Q

CY
δα 'Δ  Incremental side force coefficient due to effective pitch control 

deflection Qδ , measured normal to the total angle-of-attack plane. 
 

( )
Q

CLNREF
δα 'Δ  Incremental yaw moment coefficient about the reference center-of-

gravity location due to effective pitch control deflection Qδ , 

measured normal to the total angle-of-attack plane. 

 
( ) QCLL δΔ  Incremental roll moment coefficient due to effective pitch control 

deflection, Qδ . 
                                                                                                                                                                       

The use of the prefix Δ  indicates that this is an incremental value in the coefficient and 

the suffix Qδ  indicates that it is due to a specific value of effective pitch control 

deflection, Qδ .  Note that, by definition, the total angle-of-attack can only be positive 
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which means, for a statically stable missile that is tail controlled, a trim condition must 

always be associated with a negative value of Qδ .  These coefficients are a function of 

the effective pitch control deflection, total angle-of-attack, aerodynamic roll angle and 

Mach number. 

Roll Control Deflection 

Because missiles generally have small roll moments-of-inertia compared to the 

aerodynamic roll moment that can be developed by the control surfaces, usually only 

small control surface deflections are required in roll.  It is desired then to use 

aerodynamic derivatives that are independent of the magnitude of the roll control 

deflections to define the roll control effects.  The effect of roll control deflection ( Pδ ) on 

the aerodynamic coefficients is given by: 

QdP
dCA

δ
⎟
⎠
⎞

⎜
⎝
⎛

2            Rate of change of the axial force coefficient with the square of the roll 

control deflection, Pδ . 
 

Q
dP

dCN

δ

α
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

'
        Rate of change of the normal force coefficient with the square of the roll 

control deflection Pδ , measured in the total angle-of-attack plane. 
 

Q
dP

dCMREF

δ

α
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

'
Rate of change of the pitch moment coefficient about the reference 

                          center-of-gravity with the square of the roll control deflection Pδ ,  
                           
                          measured in the total angle-of-attack plane. 
 

Q
dP

dCY

δ

α
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ '
        Rate of change of the side force coefficient with the roll control 

deflection Pδ , measured normal to the total angle-of-attack. 
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Q
dP

dCLNREF

δ

α
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ '
Rate of change of the yaw moment coefficient about the reference               

center-of-gravity with the roll control deflection Pδ , measured normal  
 

   to the total angle-of-attack plane. 
 

QdP
dCLL

δ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ '
 Rate of change of the roll moment coefficient with the roll control 

deflection Pδ . 
 
The use of the suffix, Qδ indicates that the aerodynamic derivative applies at a specific 

value of effective pitch control deflection Qδ .  The above aerodynamic derivatives are a 

function of the effective pitch control deflection, total angle-of-attack, aerodynamic roll 

angle and Mach number.  

Effective Yaw Control Deflection 

When the maneuver demand plane and total angle-of-attack plane are not aligned, 

the result of resolving the individual control deflections normal to the total angle-of-

attack plane is termed the effective yaw control deflection.  However, because the 

demand plane and total angle-of-attack plane are generally close to being aligned, the 

magnitude of the effective yaw control deflection is usually very small.  It is desired then 

to use aerodynamic derivatives that are independent of the magnitude of the effective 

yaw control deflections to define the effective yaw control effects.  The effect of the 

effective yaw control deflection ( Rδ ) on the aerodynamic coefficients is given by: 

QdR
dCA

δ
⎟
⎠
⎞

⎜
⎝
⎛

2  Rate of change of the axial force coefficient with the square of the 

effective yaw control deflection Rδ . 
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 Rate of change of the normal force coefficient with the square of 

the effective yaw control deflection Rδ , measured in the total  
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 Rate of change of the pitch moment coefficient about the reference 

center-of-gravity with the square of the effective control deflection  
 

Rδ , measured in the total angle-of-attack plane. 
 

Q
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dCY

δ

α
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⎛ '
 Rate of change of the side force coefficient with the effective 

control deflection Rδ , measured normal to the total angle-of-attack  
 

Plane. 
 

Q
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δ
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⎛ '
 Rate of change of the yaw moment coefficient about the reference 

center-of-gravity with the effective yaw control deflection Rδ ,  
 

measured normal to the total angle-of-attack plane.  
 
 

Q
dR

dCLNREF

δ

α
⎟⎟
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⎞
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⎝

⎛ '
 Rate of change of the roll moment coefficient with the effective 

yaw control deflection, Rδ . 
 

The use of the suffix Qδ indicates that the aerodynamic derivative applies at a specific 

value of effective pitch control deflection, Qδ .  The above aerodynamic derivatives are a 

function of the effective pitch control deflection, total angle-of-attack, aerodynamic roll 

angle and Mach number. 

 43



The coefficients described in this section will be incorporated into the forces and 

moments equations in the next section of this report.    

 3.3.4 Aerodynamic Forces and Moments Coefficient Equations 

This section describes the steps taken in the missile aerodynamic model to 

determine the aerodynamic forces and moments equations used to derive the translational 

and rotational equations of motion of the missile airframe. 

 First, the 'α - partial aerodynamic coefficients are combined into the six 

primary force and moment coefficient equations in the wind axis system. 

'φ

The total aerodynamic force coefficient terms, including both longitudinal and lateral 

coefficients are: 

                    2
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The total aerodynamic moment coefficient terms, including both longitudinal and lateral 

coefficients are: 

                     R
dR

dCLLP
dP

dCLLCLLCLLCLL
QQ

Qtot δδ
δδ

δ ⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+Δ+= )(0               (3.14) 

2
2

2
20

)()()(
''

''' R
dR

dCMREF
P

dP
dCMREF

CMREFCMREFCMREF
QQ

Qtot
δδ

δ

α

δ

α
δααα ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+Δ+=   (3.15) 

 44



R
dR

dCLNREF
P

dP
dCLNREF

CLNREFCLNREFCLNREF
QQ

Qtot
δδ

δ

α

δ

α
δααα ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+Δ+=

''

''' )(
0

  (3.16) 

Where the suffix ‘0’ indicates the un-deflected “basic stability” coefficient. 

Next, the six primary missile aerodynamic coefficients described in Equations 

3.11 - 3.16 are transformed from the -  Aeroballistic coordinate system into the 

Body Axis coordinate system with the use of the coordinate transformation matrix: 

'α 'φ
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Before the forces and moment equations can be developed, the dynamic damping 

terms need to be added to the three moment coefficients in Equations 3.14 – 3.16.  These 

terms consist of damping derivative, control effectiveness and center of gravity, c.g. 

adjustments.  Rewriting Equations 3.14-3.16 with these terms gives: 
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Where,  

Pl
C  Variation of rolling moment coefficient with rate of change of roll rate 

qmC  Variation of pitching moment coefficient with pitch rate 

rnC  Variation of yawing moment coefficient with rate of change of yaw rate 

p  Roll rate of the missile 

q  Pitch rate of the missile 

r  Yaw rate of the missile 

l  Missile aerodynamic reference length 

V  Airspeed 

refcgx ,  Reference Center-of-gravity of nose where the Aerodynamic tables were 

generated from.  

cgx  Center-of-gravity of missile 

3.3.5 Accounting for First Order Effects 

Before continuing on to the forces and moments equations, the forces and 

moment coefficient terms must be simplified to include only first order effects.  The 

aerodynamic data used in the missile model does not include second-order effects 
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because, Missile DATCOM, the semi-empirical prediction software used to create the 

aerodynamic data is not capable of generating any second-order control effects.   

The first-order aerodynamic characteristics are classed as those in which the 

control surface deflection has a primary effect on the particular aerodynamic coefficient.   

The first-order effects are the effect of any of the three control deflections ( Qδ , Pδ , Rδ ) 

on the axial force coefficient, the effect of Qδ on the normal force and pitch moment 

coefficients, the effect of Pδ  on the roll moment coefficient and the effect of Rδ  on the 

side force and yaw moment coefficients.6 

The first-order terms are as follows: 

Basic stability coefficients: 

CLLCLNREFCYCMREFCNCA ,,,, '''' αααα  

Incremental coefficients: 

QQQ CMREFCNCA δαδαδ )(,)(,)( '' ΔΔΔ  

Aerodynamic derivatives: 

QQQQQ dR
dCLNREF
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Equations 3.11-3.13 and 3.18-3.20 are re-written to include only the first-order terms: 

For the total force coefficient terms: 

                    2
2

2
20 )()()( R

dR
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For the total moment coefficient terms: 
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3.3.6 Equations of Motion 

The equations of motion presented here are for a missile over a flat Earth.  Now 

that the force and moment coefficients have been defined with first-order terms, the 

forces and moments equations now can be presented. 

The force equations are: 

                THRUSTqSCAF tot +−=1                 (3.27) 

                                                              
tot

qSCYF '2 α
=                                                  

(3.28) 

                                                              
tot

qSCNF '3 α
−=                                               

(3.29) 

The moment equations are: 

                                                             qSdCLLM =1                                                  (3.30) 

 48



                                                           
tot

qSdCMREFM '2 α
=                                        (3.31) 

                                                         
tot

qSdCLNREFM '3 α
=                                         (3.32) 

Where, 

q   Dynamic pressure 

S  Reference Area 

d  Missile Diameter 

 Now the traslational and rotational equation of motion for the missile model can 

be presented.  The translational degrees of freedom, represented by the velocity 

components , and , are solved by Newton’s equation; and the rotational DoF, 

which are expressed in body rates 

u v w

p , and q r , are governed by Euler’s equation.7

Newton’s second law with respect to Earth, as the inertial reference frame, states that the 

time rate of change of linear momentum equals the externally applied forces.  Newton’s 

Equations for the translational DoF are: 

                                                gt
m
Fqwrv

dt
du

13

1 ++−=                                               (3.33) 

                                               gt
m
Frupw

dt
dv

23

2 ++−=                                               (3.34) 

                                              gt
m
Fpvqu

dt
du

33

3 ++−=                                                (3.35) 

Where,  

t  Element in the direction cosine matrix 

g  Acceleration due to gravity 
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Euler’s law states that the time rate of change of angular momentum equals the externally 

applied moments.7  Euler’s Equations for the rotational DoF are: 

                                          ( )( )1
1 mqrIII

dt
dp

zzyyxx +−= −                                               (3.36) 

                                         ( )( 2
1 mprIII

dt
dq

xxzzyy +−= − )                                              (3.37) 

                                         ( )( )3
1 mpqIII

dt
dr

yyxxzz +−= −                                               (3.38) 

3.3.7 Aerodynamic Data Generation 

The aerodynamic data for the 6-DoF missile model was based on a supersonic, 

tail controlled missile with similar geometry and mass properties of an AIM-9X missile.  

The data was generated using the semi-empirical prediction code, Missile DATCOM, or 

MISDATA.   

This section discusses the use of the aerodynamic prediction method, Missile 

DATCOM, or MISDAT, to generate the aerodynamic table data required for the 6 

degree-of-freedom SIMULINK missile model as presented by Reference 6.  The fidelity 

associated with semi-empirical prediction methods is such that in most instances, the 

aerodynamic characteristics will repeat at every 90.0 degrees in aerodynamic roll angle.  

This considerably reduced the amount of data that was required to represent the airframe 

aerodynamic characteristics.   
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Basic Airframe Aerodynamics  

The basic airframe aerodynamics consists of data on the missile configuration without 

the controls being deflected.  Since the missile is modeled in the cruciform shape 

(PHIPRM = 0.0) and: 

• Is assumed to have a small degree of asymmetry  

• Does not operate at a high angle-of-attack, 

The aerodynamic characteristics are well enough behaved to be repeated every 90.0 

degrees in aerodynamic roll angle.  Since this was the case, the data was obtained 

through a range of 45.0 degrees in aerodynamic roll angle, which captured a complete 

half cycle of the data.  The number of intermediate roll angles depends on the behavior of 

the aerodynamic characteristics.  The use of a small number of intermediate values can be 

accepted where the data are well behaved when combined with the use of Hermitian 

interpolation.   The smallest increment used in the data set was + 5.0 degrees.  A 

complete listing of all the basic airframe aerodynamic variables and the associated value 

ranges they were collected at is listed in Table 1. 

Effect of Controls  

For basic missile configurations that only exhibit a small degree of asymmetry, 

the incremental effect of the control deflections is very small.  Therefore, for a cruciform 

missile with little asymmetries, the control effectiveness is provided over a 45.0 degree 

range of aerodynamic roll angle. 

Since it is unlikely that semi-empirical prediction methods are capable of generating any 

of the second-order effects of the controls, the data set used in this research was limited 
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to first-order effects only.  The first order effects are those in which the change in the 

aerodynamic coefficient is in the same plane in which the control deflection occurs.  The 

first-order effects due to effective pitch control deflection are actual increments in the 

values of the aerodynamic coefficients.  For the roll control deflection and effective yaw 

control deflection, the first order effects are represented by aerodynamic derivatives.   

A complete listing of all the effects of control variables and the associated value ranges 

they were collected at is listed in Table 1. 
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Table 3-1:  Aerodynamic and Control Derivatives 
 

Variable Description Function of: Mach Phi’ (deg) Alpha’ 
(deg) 

DelQ Xcg 

ACA0 Undeflected Axial Force 
ACN0 Undeflected Normal Force 
ACY0 Undeflected Side Force 
ACMRF0 Undeflected Pitching Moment 
ACNRF0 Undeflected Yaw Moment 
ACLL0 Undeflected Roll Moment 

 
 

M,, '' αφ  

 
 

0.4 to 5.0 

 
 

0 to 45 

 
 

0 to 25 

 
 

N/A 

 
 

N/A 

Variable Description Function of: Mach Phi’ (deg) Alpha’ 
(deg) 

DelQ Xcg 

ADLCAQ Incremental Axial Force 
ADLCAP Axial Force Deriv. (wrt da

2) 
ADLCAR Axial Force Deriv. (wrt  dr

2) 
ADLCNQ Incremental Normal Force 
ADLCNP Normal Force Deriv. (wrt da

2) 
ADLCNR Normal Force Deriv. (wrt dr

2) 
ADLCYQ Incremental Side Force 
ADLCYP Side Force Deriv. (wrt da) 

 

ADLCYR Side Force Deriv. (wrt dr) 
ADCMRQ Incremental Pitching Moment 
ADCMRP Pitch Moment Deriv. (wrt da

2) 
ADCMRR Pitch Moment Deriv. (wrt dr

2) 
ADCNRQ Incremental Yaw Moment 
ADCNRP Yaw Moment Deriv. (wrt da) 
ADCNRR Yaw Moment Deriv. (wrt dr) 
ADCLLQ Incremental Roll Moment 
ADCLLP Roll Moment Deriv. (wrt da) 
ADCLLR Roll Moment Deriv. (wrt dr) 

 
 
 
 
 
 
 
 

Me ,,, '' αφδ
 
 

 
 
 
 
 
 
 
 

0.4 to 
5.0 

 
 
 
 
 
 
 
 

[0  26.5  45.0] 

 
 
 
 
 
 
 
 

0 to 25 

 
 
 
 
 
 
 
 

-20 to 20 

 
 
 
 
 
 
 
 

N/A 

Variable Description Function 
of: 

Mach Phi’ 
(deg) 

Alpha’ 
(deg) 

DelQ Xcg 

CMQ Pitch Damping (wrt pitch 
rate) 

M, XCG 0.4 to 5.0 N/A N/A N/A [1.52 1.58 1.65] 

CMAD Pitch Damping (wrt 
alphadot) 

M, XCG 0.4 to 5.0 N/A N/A N/A [1.52 1.58 1.65] 

CLP Roll Damping M 0.4 to 5.0 N/A N/A N/A N/A 
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3.4 Missile Autopilot 

The original missile model did not have an acceleration autopilot implemented; in 

order to control the missile during simulation, pitch plane and yaw plane acceleration 

autopilots were added.  The acceleration autopilots were taken from Zipfel, Reference 7.  

Figure 3-8, obtained from Reference 7, shows a general diagram of the acceleration 

autopilot used in the missile simulation.  Because this is a missile simulation, the yaw 

plane is implemented in the same way. 

The acceleration tracking loops for both autopilots were designed using modern pole 

placement techniques.  For best performance, proportional and integral (PI) techniques 

were applied.  Proportional control was used for quick response and integral control was 

used for zeroing the steady-state errors. To improve performance, an inner rate loop was 

added for stability augmentation.  The three feedback gains in the autopilots were solved 

to satisfy the specified closed-loop response. 

 

Figure 3-8: General Acceleration PI Autopilot 

The linear time-variant plant is: 

                       (3.39) utgxtFx )()(
.

+=
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From figure 3-8, the proportional and integral feed-forward branches with their 

respective gains, and are easily visible.  The major feedback loop is via the rate 

and acceleration gains 

PG IG

[ 12 kkc = ].  A second acceleration feedback with unit gain ξh is 

wrapped around the outside to improve performance.  The relationship for the control 

variable can be derived from the figure. 

          )()( xhvGdtxhvGxcu PI ξξ∫ −+−+−=                                     (3.40) 

The states are then augmented by introducing the scalar auxiliary variable; in its state 

equation form: 

                                                        xhv ξξ −=
.

                    (3.41) 

Substituting u into the open-loop system yields the closed-loop system, augmented by the 

auxiliary variableξ : 
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Which can be abbreviated as: 

                                                                    (3.43) vtgxtFx )()( '''
'.

+=

The eigenvalues of this closed-loop fundamental matrix 'F  must be equal to the desired 

closed-loop poles.  The condition for pole placement is: 

                           ∏
=

−=
⎥
⎥
⎦

⎤

⎢
⎢
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⎡ −++− n

i
i

IPnxn ps
sh
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)(

det
ξ

ξ                  (3.44) 

Given the linearized longitudinal plant equation: 
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where is the normal acceleration, and: a

                                                        
αα NC

m
SqN =                                                         (3.46) 
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For the condition of pole placement, the corresponding equations are: 
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     [ ]10=ξh          (3.54) 
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     [ ]12 kkc =                                                      (3.55) 

 

 

Figure 3-9 Acceleration Autopilot for Missile 

 

Figure 3-9 shows in detail, the variables described above added to Figure 3-8 (from 

Reference 7).  This schematic was directly implemented into the model simulation 

SIMULINK code.  The gains ,  and are calculated from the pole placement 

condition equation (3-11).  Evaluating the left-hand determinant and equating terms of 

equal power yields the three gains: 

1k 2k IG
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The autopilot was implemented into the simulation to calculate these gains on-line with 

changing airframe conditions.  The system dynamic characteristics, natural frequency, 

damping and pole location values chosen were evaluated over the missile flight envelope 

to ensure stability and desired system behavior.  The solution for the position feed-

forward gain is not accessible by the pole placement technique and was determined 

based on root locus analysis of the system. 

PG

 To summarize, this chapter laid the background needed to understand the Missile 

simulation created in SIMULINK that was used for this research.  Chapter 4 will now 

utilize outputs generated from running the simulation along with the linear regression 

methods described in Chapter 2 to analyze linear regression as a tool for parameter ID of 

a missile.   
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4. Results and Analysis 

4.1  Aerodynamics of the Experiment 
 
 This research focused on the longitudinal equations of motion, primarily the pitch 

equations of motion.  The uncoupled pitch dynamics consist of the pitching moment 

equation and the normal force equation.  The longitudinal angular equation for pitch 

acceleration, or is: 
.
q

            (4.1) eMqMMq eq δα δα ++=
.

and the corresponding normal force equation is: 

                                                                    (4.2) eZqZZ eq δαα δα ++=
.

Combining equations 4.1 and 4.2 into a linear state-space model format gives: 

                                              (4.3) e
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The remainder of the research concentrates on solving for ,  and  from 

Equation 4.3 using the method of Linear Regression and comparing those results to “truth 

data” obtained from the simulation. 

αM qM eMδ

4.2  Linear Regression Method Validation 
 
 Before the experimental research began, the Linear regression method described 

in Chapter 2 was validated using the linear state-space model, Equation 4.3, with a 

simple set of longitudinal stability and control derivatives.  This data was taken from 

Reference 8, for a small, single jet engine, military training airplane. 
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For an aircraft, the equations for the longitudinal dimensional stability derivatives 

(from Reference 8) are: 

m
CCSq

Z DL )( +−
= α

α                                                     (4.4)   
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=                                                                (4.5) 
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α =                                                                 (4.7) 
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m
q

q

2

2

=            (4.8) 

yy

em
e I

CcSqM δ
δ =          (4.9) 

For the example aircraft, the following values were used to solve the above equations.  

Flight condition: 

25,000 ft. altitude, Mach 0.6, Cruise 

Reference Geometry: 

S (wing area) = 136 ft2, c  (root chord) = 4.4 ft 

Flight Condition Data: 

U (True Airspeed, TAS) = 610 ft/sec 

q  (Dynamic Pressure) = 198 lbs/ft2

Mass Data: 

W (weight) = 4,000 lb 
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Iyy = 4,800 slug-ft2 

 

Steady State Coefficients: 

149.0=LC  

0220.0=DC  

Longitudinal Coefficients and Stability Derivatives (Stability Axis, Dimensionless): 

5.5=
αLC  

0.10=LqC  

24.0−=
αmC  

7.17−=
qmC  

Longitudinal Control and Hinge Moment Derivatives (Stability Axis, 1/rad) 

38.0=
eLC

δ
 

88.0−=
emC

δ
 

Solving for Equations 4.4 through 4.9 and putting their values into Equation 4.3 gives, 
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The linear state-space model was then simulated in MATLAB using the command 

“LSIM” using a sine wave with amplitude of 100 as the control elevator input for 5 

seconds.  The resulting time histories for Angle of Attack, Pitch rate, Elevator deflection 

and Pitch acceleration for the simulation are shown below in Figure 4-1. 
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Figure 4-1 Time Histories of Linear model parameters 

To validate the linear regression method described in Chapter 2, the time history values 

of α (angle of attack in degrees), q (pitch rate in degrees/sec), eδ (Elevator angle in 

degrees) and (pitch acceleration in degrees/sec.
q

2) were obtained from the linear 

simulation to estimate the derivatives, ,  and  using Equation 4.1. αM qM eMδ

                                   eMqMMq eq δα δα ++=
.

Using Equation 2.9 from Chapter 2 for the least-squares estimator 

               yXXX TT 1)( −
∧

=θ

and defining X and Y as:  

       [ ]eqX δα=                                                     (4.11) 
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                                                 (4.12) 
.
qY =

The values obtained for  using Equation 4.11, 4.12 and 2.9 are compared to the original 

values calculated from Equations 4.4 through 4.9 in Table 4-1 below. 

∧

θ

Table 4-1:  Comparison of Longitudinal Dimensional Stability Derivatives 

  Θ Values “Truth Data” 
(Equations 4.4 – 4.9) 

Mα -290.8 -290.82 

Mq -2895.5 -2895.5 

-26.70 -26.66 Mδe 

 

From Table 4-1, it is shown that the linear regression method produces results that 

compare well with “Truth Data”.  Slight variations in the numbers are due to rounding in 

MATLAB.  This validates the method for the scope of this research. 

4.3  Exercising the Simulation 
 
 The 6-DOF missile simulation described in Chapter 3 was exercised to create a 

series of batch runs containing several different missile fly-out scenarios terminating 

when the missile reached the target.  After reviewing the accumulated data from the 

simulation, it was found that the autopilot of the missile model was not commanding a 

suitable input for excitation of missile maneuvers used for parameter identification.   

4.3.1 Control Signal Input Form 

Determining the best input form to successfully excite the missile airframe for 

parameter identification study is one of the most critical parts of the design of the 
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experiment.  Many different forms of control inputs have been used.  There are usually 

four common kinds:  

• Transient (Step, Impulse etc.)  

• Sinusoids of various frequencies and amplitudes (Doublets) 

• Stochastic signals  

• Pseudorandom (white) noise  

It is well known that the shape of an input signal could influence the accuracy of 

estimated parameters from dynamic flight measurements.9

The power of an input signal should be distributed uniformly over the frequency range 

covering the dominant airframe dynamics.  Transient signals such as a step input or an 

impulse usually fail in this regard due to their short duration over the simulation.  All 

modes of the system might not be excited (lack of persistent excitation) and the regressor 

matrices used to obtain model parameters might be close to being singular leading to 

numerical problems.  In Figure 4-1 taken from Reference 9, power spectral densities of 

three inputs are presented.  The step input excites modes of lower frequencies only, 

which makes it unsuitable for parameter estimation.  The power spectral density of a 

multi-step input is a relatively wide band compared to the doublet, which excites only a 

particular band at a higher frequency.  By changing the duration of the doublet, the peak 

of the power spectral density can be shifted to lower or higher frequencies, which makes 

it very suitable for parameter estimation.   

System identification using pseudorandom noise signals is also very commonly 

used. The noise is usually rich in all frequencies and therefore excites all modes of the 

plant being measured. This leads to good estimates of the model parameters.10  
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Figure 4-2 Frequency Domain Comparison of Various Input Signals 

Klein, Reference 9, has determined other basic requirements for aircraft parameter 

identification: 

• The input form should be selected in agreement with the mathematical model 

representing the aircraft under test.  For example, an input for the longitudinal short-

period model with linear stability and control derivatives should not cause aircraft motion 

where the assumptions of constant airspeed and linear aerodynamics are not valid. 

• The input form should also be within the bandwidth of the actuator driving the 

control surface being commanded for the maneuver of the missile.  The missile model 

used for this research does not have an actuator modeled; the commanded input is 

directly fed through to the model without being augmented by actuator dynamics.  

Therefore, this requirement and the implications associated with it were not included in 

the scope in this research. 

It was decided, based on the results of the original simulation runs, to by-pass the 

autopilot in the simulation with a command generator utilizing a series of different pitch 

doublets varying in frequency including band-limited white noise.  After testing multiple 

inputs of pitch doublets and band-limited white noise of varying frequencies and 
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amplitudes, two input types showed the most potential to be used for the estimation of the 

longitudinal derivatives of the missile.  These input types were chosen because they 

provided the most excitation to the system without exceeding the physical limitations of  

missile actuator hardware. The first input type is a pitch doublet at 2 Hz, shown in Figure 

4-3.  The second input type is band-limited white noise that produces a normally 

distributed random signal, shown in Figure 4-4. 

 

Figure 4-3 Two Hz Pitch Doublet Input Signal 

 

Figure 4-4 Band-Limited White Noise Input Signal 
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4.3.2 Control Signal Input Implementation into Simulation 

The missile is modeled in the cruciform shape (PHIPRM = 0.0) having 4 different 

control surfaces along the X and Y-axis as seen in Figure 4-5.   

 

Figure 4-5 Cruciform Missile Layout 

The relationship between the individual control deflections and three axes control 

deflections is shown from Equation 3.10, repeated here. 
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Fins numbered 2 and 4 are the pitch control surfaces and Fins 1 and 3 control the roll 

and yaw axes.  Fins 2 and 4 are coupled together with Fin 4 commanding opposite that of 

Fin 2.  This equates to a negative command input for Fin 4 in the simulation.  Since this 
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research focused only on the determining the longitudinal stability and control 

derivatives, Fins number 2 and 4 were commanded with the pitch command inputs 

described in Figures 4-3 and 4-4 above and Fins numbered 1 and 3 were set to zero. 

4.4 Linear Regression Estimation 

The data was collected by running the simulation twice; each instance using one of 

the two input signals selected from Section 4.3.  The High frequency pitch doublet in 

Figure 4-3 will be labeled Test Case 1 and the Band limited white noise signal in Figure 

4-4 will be labeled Test Case 2.  The variables, α (angle of attack in degrees), q (pitch 

rate in degrees/sec), eδ (Elevator angle in degrees) and (pitch acceleration in 

degrees/sec

.
q

2) were collected from the simulation time history for the research.  They are 

as follows for Test Case 1 and Test Case 2, respectively. 

 

Figure 4-6 High Frequency Pitch Doublet Input/Output (Test Case 1) 
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Figure 4-7 Band Limited White Noise Input/Output (Test Case 2) 

Data collected from each simulation time history was partitioned into discrete samples 

taken at every 10th sample, or every 0.01 seconds for the entire time of the simulation, 

which ran for 10 seconds with 10,000 samples taken.  The time histories were partitioned 

in this way for the estimation of the longitudinal dimensional stability derivatives, , 

 and . 

αM

qM eMδ

These derivatives are computed by utilizing the Linear regression technique, described in 

Chapter 2, to solve Equation 4.1 from Section 4.2 

                                   eMqMMq eq δα δα ++=
.

Using Equation 2.9 from Chapter 2 for the least-squares estimator 

                                                                 yXXX TT 1)( −
∧

=θ
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Where X, also called the regressor matrix, and Y are defined as:  

                                                     [ ]eqX δα=1                                                      (4.13) 

                                                                                                                            (4.14) 
.
qY =

Partitioning the data to every 10 samples satisfies the requirement that  in order to 

estimate the n parameters for

nm ≥

iθ , where 10=m  and 3=n .  From Equation 2.4, 
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Solving Equation 2.9 gives a θ at each partitioned sample data set where: 

                                                 [ ]eq MMM δαθ =1                                                  (4.15)  

Figures 4-8 through 4-19, which will be discussed in the following section, show the 

comparison between the estimated values of ,  and to the actual values from 

the 6-DoF missile model simulation.  Some of the Figures show the effect of passing the 

data through a second-order filter, given by:  

αM qM eMδ

                                                 22

2

2 nn

n

ss
Filter

ωζω
ω

++
=                                            (4.16) 

Where, 

                                     22 ⋅= πωn            and           
2
2

=ζ                                      (4.17) 

These filtered estimates are shown in Figures 4-11, 4-15 and 4-19 for Test Case 1 and 

Figures 4-13, 4-17 and 4-21 for Test Case 2. 
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4.4.1 Linear Regression Estimation Analysis of Results 

 This section presents an analysis of the results obtained from applying the Linear 

Regression method to estimate the longitudinal stability and control derivatives from the 

simulation truth data.   

4.4.1.1 , Pitch angular acceleration per unit angle of attack: αM

Figures 4-10 and 4-11 show the estimates of  for Test Case 1 compared to the 

truth data from the simulation.  Once the estimate data was filtered, it was easier to see 

the trend of the data for each estimate.  The overall trend is good, however there is some 

bias in the estimate data.  Figures 4-12 and 4-13 show the estimates of  for Test Case 

2 compared to the same truth data from the simulation.  The filtered data shown in Figure 

4-13 show that for the time history captured, the estimate follows well with the trend with 

very little bias.  While the estimate doesn’t exactly track the oscillations of the truth data, 

the overall mean values compare well, based on a visual inspection of the figure.  

Overall, results obtained for  were better with the band-limited white noise command 

signal input than the pitch doublet.   

αM

αM

αM

4.4.1.2 , Pitch angular acceleration per unit pitch rate: qM

Figures 4-14 and 4-15 show the estimates of  for Test Case 1 compared to the 

truth data from the simulation.  Again, it was easier to see the trend of the data using the 

filtered estimate.  The estimate had an average bias of about 0.2 compared to the truth 

data and had some erratic data points in the estimate near end of the time history.  These 

erratic data points at the end are cause by an ill-condition X matrix for the estimates at 

qM
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this time section.  This will be further discussed later in this report.  Figures 4-16 and 4-

17 show the estimates of  for Test Case 2 compared to the same truth data from the 

simulation.  The filtered data shown in Figure 4-17 show that for the time history 

captured, the had an average bias of about 0.2, identical to Test Case 1.  Overall, both 

Test Cases failed to estimate  with any real accuracy.  This was expected, however, 

because  is generally difficult to estimate with parameter ID techniques. 

qM

qM

qM

4.4.1.3 , Pitch angular acceleration per unit elevator (pitch deflection) input: eM δ

Figures 4-18 and 4-19 show the estimates of  for Test Case 1 compared to the 

truth data from the simulation.  From the filtered estimate data, it was easier to see the 

trend of the data for each estimate.  The overall trend is good; there is little overall bias in 

the data with the exception to the erratic data points found in the data near the beginning 

and at the end of the time history.  These erratic data points result from ill-conditioned 

regressor matrices, X , which will soon be discussed.  

eMδ

Figures 4-20 and 4-21 show the estimates of  for Test Case 2 compared to the 

same truth data from the simulation.  The filtered data shown in Figure 4-21 shows that 

for the time history captured, the estimate follows well with the trend of the truth data.  

There is, however, a small horizontal shift in the data compared to the un-filtered 

estimate data in Figure 4-20.  This shift or bias is caused by the second order filter 

implemented to smooth the original estimate data.  If the truth data is also filtered with 

the second order filter the shift goes away.  This is seen in Figure 4-22.  Overall, results 

obtained for  were better with the band-limited white noise command signal input 

eMδ

eMδ

 72



than the pitch doublet.  This next section will discuss what an ill-conditioned regressor 

matrix is and how it is determined.   

4.4.1.4 Condition number of Regressor Matrix, X1 

 The condition number of a matrix provides an indication of the sensitivity of the 

solution of a system of linear equations to errors in the data.  The 2-norm condition of a 

rectangular matrix is the ratio of the largest and smallest singular values.  For rectangular 

matrices with full column rank:  

          
)(
)()()(,

min

max

X
XXnXrankIRX mxn

σ
σκ =⇒=∈                            (4.18) 

It gives an indication of the accuracy of the results from matrix inversion and the 

linear equation solution.  Values near 1 indicate a well-conditioned matrix.  Large 

condition numbers indicate a nearly singular matrix or an ill-conditioned matrix.  Figures 

4-8 and 4-9 give the condition number of the estimates, 1θ  for the regressor matrix, X1 for 

both Test Case 1 and Test Case 2.  The highest and lowest condition numbers for both 

commanded signal input types for X1 are shown in Table 4-2 below. 
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Table 4-2:  Comparison of Maximum and Minimum Condition Numbers for X1 

Regressor Matrix, X1 Highest Condition Number Lowest Condition Number 

Test Case 1 3e6 3e3

5e3Test Case 2 10 

 

 

Figure 4-8 Condition Number of X1 for Test Case 1 
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Figure 4-9 Condition Number of X1 for Test Case  

From observation of Figure 4-9, high condition numbers occur at the beginning and 

the end of the time history data set.  This has a direct correlation to the shape of the 

estimates of ,  and  for Test Case 1 in Figures 4-11, 4-15 and 4-19, where the 

erratic data points in the beginning and end of the time history exist.  This indicates that 

the pitch doublet signal used for Test Case 1 was not set to a high enough frequency to 

excite all the modes of the system, which therefore, produces the singularities in the 

Regressor Matrix, X.  These singularities also occur when the commanded pitch signal 

crosses zero in the simulation. 

αM qM eMδ

Figure 4-9 shows an average condition number for Test Case 2 for the entire time 

history.  This trend could translate into the biases seen in Figures 4-13, 4-17 and 4-21 for 

 75



 76

the estimates for Test Case 2.  From Figures 4-8 and 4-9, it is clear that the band-limited 

white noise signal does a better job of exciting the modes of the system than the pitch 

doublet due to the lower condition numbers (fewer singularities) shown in Figure 4-9.  



 

Figure 4-10  Test Case 1 Comparison of 1θ to “Truth Data” for  αM

 

Figure 4-11 Filtered Test Case 1 Comparison of 1θ to “Truth Data” for  αM
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Figure 4-12  Test Case 2 Comparison of 1θ to “Truth Data” for  αM

 

Figure 4-13 Filtered Test Case 2 Comparison of 1θ to “Truth Data” for αM
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Figure 4-14  Test Case 1 Comparison of 1θ to “Truth Data” for  qM

 

Figure 4-15  Filtered Test Case 1 Comparison of 1θ to “Truth Data” for  qM
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Figure 4-16  Test Case 2 Comparison of 1θ to “Truth Data” for  qM

 

Figure 4-17 Filtered Case 2 Comparison of 1θ to “Truth Data” for  qM
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Figure 4-18  Test Case 1 Comparison of 1θ to “Truth Data” for  eMδ

 

Figure 4-19 Filtered Test Case 1 Comparison of 1θ to “Truth Data” for  eMδ
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Figure 4-20  Test Case 2 Comparison of 1θ to “Truth Data” for  eMδ

 

Figure 4-21  Filtered Test Case 2 Comparison of 1θ to “Truth Data” for  eMδ
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Figure 4-22 Comparison of Filtered Est. to Filtered Truth Data  

 

4.5 Linear Regression Estimation Validation 

The next step of the research focused on examining the validity of the calculated 

estimates for ,  and .  To test this, the time histories of the estimates, αM qM eMδ 1θ   

were fed into the linear model of the system, from Equation 4.3: 
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Where:  

                                                          αα M
c
lZ ⋅=                                                   (4.19) 

                                                          qq M
c
lZ ⋅=                                                   (4.20) 

                                                          
ee

M
c
lZ δδ ⋅=                                                 (4.21) 

Where, (missile length) and m 0.4696=l m 0.1280=c (missile diameter). 

This linear model was then simulated in SIMULINK in discrete time, using the same 

command inputs as for the 6-DoF missile model simulation (from Figures 4-3 and 4-4) 

and the output data was recorded.  Once again, the variables α (angle of attack in 

degrees), (pitch rate in degrees/sec), q eδ (Elevator angle in degrees) and (pitch 

acceleration in degrees/sec

.
q

2) were collected from the simulation time history for the 

research.  These time histories for both Test Case 1 and Test Case 2 are shown below in 

Figures 4-23 and 4-24.

 84



 

Figure 4-23 Pitch Doublet Input/Output for Linear Model (Test Case 1)  

 

Figure 4-24 White Noise Input/Output for Linear Model (Test Case 2)
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The derivatives, ,  and  were then estimated for a second time from the time 

history outputs of the linear model in Equation 4.3 with the original estimates acting as 

the truth states of the model.  

αM qM eMδ

The original estimates 1θ  were compared to the new estimates of the linear model, 2θ  

to check the estimation technique.  The new estimates 2θ  were filtered using Equations 

4-14 and 4-15 and were compared to the original estimates made from the 6-DoF missile 

model simulation.  Figures 4-27 through 4-32 shows the comparisons made between the 

original estimate, 1θ  to the linear model estimate, 2θ  for both Test Case 1 and Test Case 

2. 

4.5.1 Linear Regression Estimation Validation Analysis of Results 

 This section presents an analysis of the results obtained from applying the Linear 

Regression method to estimate the longitudinal stability and control derivatives from the 

simulation truth data.   

4.5.1.1 , Pitch angular acceleration per unit angle of attack: αM

Figure 4-27 shows the estimates, 2θ  of  for Test Case 1 compared to the 

original estimates, 

αM

1θ .  The overall trend did not match well with 1θ , and there were two 

transient noise periods, one at the beginning of the estimates and one at the end.  Figure 

4-28 show the estimates of  for Test Case 2 compared to the original estimates,αM 1θ .  

The overall trend was good.  The original estimate is noisier than the new estimate.  
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Overall, results obtained for  were better with the band-limited white noise command 

signal input than the pitch doublet.   

αM

4.5.1.2 , Pitch angular acceleration per unit pitch rate: qM

Figure 4-29 shows the estimates, 2θ  of  for Test Case 1 compared to the 

original estimates, 

qM

1θ .  The new estimate has some transient noise at the beginning and 

the end of the time history, but in the middle compares better.  These erratic data points 

causing the transient noise in the estimates are cause by an ill-condition X matrix for the 

estimates at this time section.  This will be further discussed later in this report.  Figure 4-

30 shows the estimates, 2θ  of  for Test Case 2 compared to the original estimates, qM 1θ .  

Other than the short transient noise occurring at the beginning of the data, the overall 

trend of the new estimate follows the original estimate very well.  Surprisingly, the 

estimates made for for both Test Cases were much better than were the original 

estimates to the truth data.   

qM

4.5.1.3 , Pitch angular acceleration per unit elevator (pitch deflection) input: eM δ

Figure 4-31 shows the estimates, 2θ  of  for Test Case 1 compared to the 

original estimates,

eMδ

1θ .  Once again, there are the transient noise caused by erratic data in 

the beginning and the end of the time history of estimates. This phenomenon will be 

discussed in Section 4.5.1.4.   

Figure 4-32 shows the estimates, 2θ  of  for Test Case 2 compared to the 

original estimates,

eMδ

1θ .  While there is some bias between the estimates, this is one of the 
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best matching comparisons.  The bias is caused by the second order filter used to smooth 

the estimate data, see Section 4.4.1.3.  The trend is identical between both estimates as 

are any fluctuations in the data.  Overall, once again, the results obtained for  were 

better with the band-limited white noise command signal input than the pitch doublet.  

This next section will present the condition number analysis made for the Linear 

Regression Validation experiment. 

eMδ

4.5.1.4 Condition number of Regressor Matrix, X2 

 The definition of the condition number of the matrix was originally defined in 

Section 4.4.1.4.  Figures 4-25 and 4-26 give the condition number of the estimates, 2θ  for 

the regressor matrix, X2 for both Test Case 1 and Test Case 2.  The highest and lowest 

condition numbers for both commanded signal input types for X2 are shown in Table 4-3 

below. 

 

Table 4-3:  Comparison of Maximum and Minimum Condition Numbers for X2 

Regressor Matrix, X2 Highest Condition Number Lowest Condition Number 

Test Case 1 7e9 11e3

6e7Test Case 2 40 
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Figure 4-25 Condition Number of X2 for Test Case 1 

 
Figure 4-26 Condition Number of X2 for Test Case 2
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From observation of Figure 4-25, high condition numbers occur at the beginning and 

the end of the time history data set similar to Figure 4-26.  This again has a direct 

correlation to the shape of the estimates of ,  and  for Test Case 1 in Figures 

4-27, 4-29 and 4-31, where the erratic data points in the beginning and end of the time 

history exist.  This is another indication that the pitch doublet signal used for Test Case 1 

was not set to a high enough frequency to excite all the modes of the system, which 

therefore, produces the singularities in the Regressor Matrix, X.   

αM qM eMδ

Figure 4-26 shows a large concentration of high condition numbers at the beginning 

of the time history data.  This trend directly correlates to the cause of the large transient 

noise data points seen in the beginning of Figures 4-28, and 4-30 for the estimates for 

Test Case 2.  From Figures 4-8, 4-9, 4-25 and 4-26, it is clear that the band-limited white 

noise signal does a better job of exciting the modes of the system than the pitch doublet 

due to the lower condition numbers (fewer singularities). 

Generally the results of 2θ  (the longitudinal derivatives estimated from the linear model 

of the 1θ  estimates), proved to be an acceptable validation of the linear regression 

technique.   
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Figure 4-27  Test Case 1 Comparison of 1θ to 2θ for  αM

 

Figure 4-28  Test Case 2 Comparison of 1θ to 2θ for  αM
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Figure 4-29  Test Case 1 Comparison of 1θ to 2θ for  qM

 

Figure 4-30  Test Case 2 Comparison of 1θ to 2θ for  qM
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Figure 4-31  Test Case 1 Comparison of 1θ to 2θ for  eMδ

 

Figure 4-32  Test Case 2 Comparison of 1θ to 2θ for eMδ
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5.  Conclusions and Recommendations 

5.1 Conclusions 
 
 Using Linear Regression as a parameter identification method to determine the 

longitudinal dimensional stability derivatives of a tactical missile was presented in this 

document.  The linear regression technique was applied and compared to actual 

simulation data to determine the suitability of the method.  Two control input forms were 

tested and compared.  Estimates were determined from flight test data obtained from a 6-

DoF missile model simulation and also from a discrete linear model of the system.   

This research shows that a relatively simple estimation method such as linear 

regression can be used successfully in determining longitudinal dimensional stability 

derivatives of a tactical missile in flight.  Comparative results presented in the previous 

section confirm that using a control input form with higher frequency modulations, such 

as band-limited or filtered white noise, leads to good estimates of model parameters.  

While this method is not as complex as other methods of parameter estimation, the results 

show that satisfactory estimates can be obtained in a short amount of time.  This could be 

beneficial for engineers who require a rough estimation of missile aerodynamic 

parameters.  The results of the research presented here will help shed light on and further 

the study of parameter identification for air-to-air missiles.   

5.2 Recommendations Further Research 

The linear regression method presented here was only applied to determining the 

longitudinal dimensional stability derivatives of the missile simulation.  There is a need, 
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however, to expand this research to include the lateral-directional dimensional stability 

derivatives as well.   

 Future work should also include improving the missile simulation used in this 

research.  The missile simulation did not include an actuator model for the control 

surfaces of the missile.  This factor could significantly alter the results of this research.  

This research only concentrated on data input control signals that were not filtered by 

actuator dynamics.  The actuator model might introduce physical limitations to the input 

signal, which, for example, could limit the magnitude and frequency of the input signals 

that were used in this research.  As stated earlier, the input form should be within the 

bandwidth of the actuator driving the control surface being commanded for the maneuver 

of the missile.  This factor might make using band-limited white noise or high frequency 

pitch doublets as input signals unfeasible for air-to-air missile parameter identification. 

Expanding the experimental factors used in this research should be investigated.  

For this research, only two forms of control signal actuation were examined.  More 

control signal input types, such as sinusoidal inputs or chirp signals varying in frequency 

would be of value to further the knowledge on this subject to the community.  Different 

sample sizes should also be explored.   For the linear regression analysis, samples of the 

time history data sets were limited to only 10 samples per iteration, or every 0.01 seconds 

for the entire time of the simulation, which ran for 10 seconds with 10,000 samples taken.                              

The best estimates resulting from this research were for the derivatives,  and .  

Further research needs to be done to determine better estimates of .  With these 

recommendations for further research to be explored; a better conclusion can be made on 

αM eMδ

qM
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the applicability of using Linear Regression analysis for tactical missile aerodynamic 

parameter estimation.   

  

 

 
 

 96



 Bibliography 
 
1. Kain, James E., Charles M. Brown Jr., and Jang G. Lee. Missile Aerodynamic   

Parameter and Structure Identification from Flight Test Data. AFATL-TR-77-
129.  The Analytic Sciences Corporation, 1977. 

 
2. Mealy, Gregory L. and Arwen M. Warlock.  Airframe Coefficient Estimation 

System (ACES): Algorithm Manual.  TR-8977-14-2.  TASC, 30 September 1999.   
 
3. Buffington, J., P. Chandler, M. Pachter.  “Integration of On-line System 

Identification and Optimization-based Control Allocation,” American Institute of 
Aeronautics and Astronautics.  AIAA-98-4487, 1998.   

 
4. Smith, L., P.R. Chandler, M. Pachter.  “Regularization Techniques for Real-Time 

Identification of Aircraft Parameters,”  American Institute of Aeronautics and 
Astronautics.  AIAA-97-3740, 1997. 

 
5. Hsia, T.C.  System Identification: Least-Squares Methods.  Lexington MA: 

Lexington Books, 1977. 
 

6. Byram, Timothy R., Final Report on High Fidelity Missile Fly Out Modeling 
Process Enhancement.  TAG 31-01,Contract F33657-94-D-0012.  BATTELLE, 
October 13, 1997. 

 
7. Zipfel, Peter H.  Modeling and Simulation of Aerospace Vehicle Dynamics.  

Reston VA: American Institute of Aeronautics and Astronautics, Inc., 2000.  
 

8. Roskam, Jan.  Airplane Flight Dynamics and Automatic Flight Controls.  
Lawrence KS: Design, Analysis and Research Corporation (DARcorporation), 
2003. 

 
9. Klein, Vladislav.  “Estimation of Aircraft Aerodynamic Parameters from Flight 

Data,” Prog. Aerospace Sci., Vol. 26, pp. 1-77, 1989. 
 

10. Class notes, Mechatronics 2.737, Laboratory Assignment 6: System Identification 
using Frequency Response Measurements.  Dept. of Mechanical Engineering, 
Massachusetts Institute of Technology, Cambridge, MA, 1999. 

 
 

 97



REPORT DOCUMENTATION PAGE  Form Approved  
OMB No. 0704–0188  

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing 
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or 
any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate 
for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that 
notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.  
1. REPORT DATE (DD–MM–YYYY)  
14 Sep 06 

2. REPORT TYPE  
 
Master’s Thesis  

3. DATES COVERED (From — To) 
 
Oct 2003 — Aug 2006  
5a. CONTRACT NUMBER  

5b. GRANT NUMBER  

4. TITLE AND SUBTITLE  
 
Parameter Estimation of a Tactical Missile using Linear 
Regression  

5c. PROGRAM ELEMENT NUMBER  

5d. PROJECT NUMBER  

5e. TASK NUMBER  

6. AUTHOR(S)  
 
Kelly S. Powers  

5f. WORK UNIT NUMBER  

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)  
 
Air Force Institute of Technology  
Graduate School of Engineering and Management (AFIT/EN) 
2950 Hobson Way  
WPAFB OH 45433-7765  
 

8. PERFORMING ORGANIZATION REPORT 
NUMBER 
 
AFIT/GAE/ENY/06-S12  

10. SPONSOR/MONITOR’S ACRONYM(S)  9. SPONSORING / MONITORING AGENCY NAME(S) AND 
ADDRESS(ES)  
 
James Simon 
NASIC/ADNW 
4180 Watson Way 
WPAFB, OH 45433-5648 
 
 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S)  

12. DISTRIBUTION / AVAILABILITY STATEMENT  
 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED  

13. SUPPLEMENTARY NOTES  

14. ABSTRACT  
This research presents the method of Linear Regression as a parameter identification method to 
determine the longitudinal dimensional stability derivatives of a tactical missile.  Missile flight histories 
are characterized by rapid accelerations, rapidly changing mass property characteristics with often 
short flight times.  These characteristics make accurate parameter estimation of the missile 
aerodynamics more challenging than for aircraft.  The simulation used for this research was created in 
MATLAB/SIMULINK based on the missile trajectory program, TRAP.  The aerodynamic data for the 6-
DoF missile model was based on a supersonic, tail controlled missile similar to an AIM-9X missile.  
Two command input types were investigated for excitation of the system modes. 
This research shows that linear regression can be used successfully in determining longitudinal 
dimensional stability derivatives of a tactical missile in flight when using a control input form with higher 
frequency modulations, such as band-limited or filtered white noise.   
 
15. SUBJECT TERMS 
Tactical Missiles, Aerodynamics, Linear Regression, Parameter Estimation, Longitudinal Stability 
coefficients, Modeling and Simulation, MATLAB/SIMULINK.  

16. SECURITY CLASSIFICATION OF:  19a. NAME OF RESPONSIBLE PERSON 
 
Dr. David R. Jacques 

a. 
REPORT 
 
U 

b. 
ABSTRACT 
 
U 

c. THIS 
PAGE 
 
U 

17. LIMITATION 
OF ABSTRACT  
 
 
 
     UU  

18. NUMBER 
OF PAGES  
 
  
 
   97  

19b. TELEPHONE NUMBER (Include Area Code) 
(937) 255-3355, ext 3329; e-mail: 
David.Jacques@afit.edu 
 

Standard Form 298 (Rev. 8–98)  
Prescribed by ANSI Std. Z39.18  


	Acknowledgements 
	 Table of Contents 
	 
	 
	 List of Figures 
	List of Tables 
	1. Introduction 
	1.1  General 
	1.2  Background 
	1.3  Research Objective 
	 1.4  Approach and Scope 
	1.5 Relevance 
	1.6 Document Overview 
	 2.  Linear Regression Technique 
	2.1  Overview 
	2.2  Least-Squares Theory 
	2.2.1 Least-Error-Squares 

	2.3  Statistical Properties of Least-squares Estimators 

	3.  Missile Model and Simulation Environment 
	3.1  Overview 
	3.2  Missile Simulation 
	3.2.1  Simulation Components 
	5 DoF Launch Aircraft 
	3 DoF Target Aircraft  
	6 DoF Missile  
	TELEMON TRAP Perfect Seeker and TRAP Momentum Gimbal 


	3.3 Missile Aerodynamic Model 
	3.3.1 Aerodynamic Angle Definitions 
	3.3.2 Control Surface Deflection Conventions 
	Individual Control Surface Deflections  
	Effective Pitch Control Deflection   
	Effective Yaw Control Deflection  
	Roll Control Deflection  
	Squeeze Control Deflection  
	Combinations of Control Surface Deflections 

	3.3.3 Aerodynamic Coefficients 
	Basic Airframe Aerodynamics 
	Airframe Aerodynamics with Control Effects 
	Effective Pitch Control Deflection 
	Roll Control Deflection 
	Effective Yaw Control Deflection 


	 3.3.4 Aerodynamic Forces and Moments Coefficient Equations 
	3.3.5 Accounting for First Order Effects 
	3.3.6 Equations of Motion 
	3.3.7 Aerodynamic Data Generation 
	Basic Airframe Aerodynamics  
	Effect of Controls  


	 3.4 Missile Autopilot 

	4. Results and Analysis 
	4.1  Aerodynamics of the Experiment 
	4.2  Linear Regression Method Validation 
	4.3  Exercising the Simulation 
	4.3.1 Control Signal Input Form 
	4.3.2 Control Signal Input Implementation into Simulation 

	4.4 Linear Regression Estimation 
	4.4.1 Linear Regression Estimation Analysis of Results 
	4.4.1.1  , Pitch angular acceleration per unit angle of attack: 
	4.4.1.2  , Pitch angular acceleration per unit pitch rate: 
	4.4.1.3  , Pitch angular acceleration per unit elevator (pitch deflection) input: 
	4.4.1.4 Condition number of Regressor Matrix, X1 


	 
	4.5 Linear Regression Estimation Validation 
	4.5.1 Linear Regression Estimation Validation Analysis of Results 
	4.5.1.1  , Pitch angular acceleration per unit angle of attack: 
	4.5.1.2  , Pitch angular acceleration per unit pitch rate: 
	4.5.1.3  , Pitch angular acceleration per unit elevator (pitch deflection) input: 
	4.5.1.4 Condition number of Regressor Matrix, X2 



	5.  Conclusions and Recommendations 
	5.1 Conclusions 
	5.2 Recommendations Further Research 





